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Jetson Nano GPU

Nvidia Maxwell GPU:

128-core GPU | Tile Caching 

OpenGL 4.6 | OpenGL ES 3.2 | CUDA supported

OpenGL ES Shader (up to): 512 GFLOPS (FP16)

Operating Frequency: 

Base clock: 640 MHz | Boost Clock: 921 MHz



Features of the GPU:

● Graphics Processing Cluster (GPC)
○ Each GPC contains multiple Streaming 

Multiprocessors and a Raster Engine
● Each SMM has 4 independent processing 

blocks each with:
○ Its own instruction buffer
○ A dedicated scheduler
○ 32 CUDA cores

● DVFS (what we are trying to investigate)



Why are we doing this?

● Modern embedded systems—from drones and robots to smart cameras—rely heavily on 
GPUs for compute-intensive tasks such as deep learning inference and real-time image 
processing. These workloads are not only performance-critical but also energy-sensitive 
due to strict power and thermal constraints in mobile and edge environments.

● Just like CPUs, GPUs employ DVFS to manage power. However, unlike CPUs where DVFS 
behavior has been extensively studied, the DVFS behavior of embedded GPUs like the 
Maxwell GPU in Jetson Nano remains poorly understood and largely undocumented.

● In recent years, hardware-managed DVFS schemes—where the GPU autonomously 
adjusts its frequency and voltage—have become more common. These systems offer faster 
response times but hide the control logic, making it difficult to analyze or predict 
power-performance behavior without access to internal hardware IP.



Problem Addressed:

● There is no clear model or documentation 
explaining how embedded GPUs like the Jetson 
Nano's Maxwell core make DVFS decisions. This 
opacity creates challenges for:

○ Predicting thermal throttling behavior  
○ Designing efficient and stable GPU workloads  
○ Maximizing performance within a fixed power budget  

● To address this, we develop parameterized GPU 
microbenchmarks that allow us to:

○ Systematically probe the GPU's power and frequency 
response across compute and memory workload types.

○ Create maximum-stress workloads that reveal upper 
bounds of GPU behavior.

○ Collect data from onboard monitors (via sysfs) to capture 
real-time power, frequency, and thermal states.



Our GOAL:

● To model and understand the GPU’s DVFS mechanism by observing how its 
operating frequency, power consumption, and temperature respond to diverse 
workloads varying in:

○ Parallelism (via threads and blocks)
○ Arithmetic intensity
○ Memory access patterns

● To contribute a “TOOL” for programmable Jetson utilization, correlated with 
power measurements.



Power Management:



Finding Frequency

/sys/devices/gpu.0/devfreq/57000000.gpu/cur_freq

● /sys/devices/gpu.0/ — Refers to the GPU device (Maxwell GPU) registered as 
gpu.0.

● devfreq/ — Part of the Dynamic Voltage and Frequency Scaling (DVFS) 
framework in Linux.

● 57000000.gpu/ — This is the device name of the GPU node created by the 
device tree.

○ 57000000 is the base address of the GPU in physical memory, defined in the Jetson Nano's 
device tree (in the hardware definition).

○ It refers to the Tegra X1's GPU hardware block, typically the GPU controller.
● cur_freq — This file gives the current operating frequency of the GPU in Hz.



Finding Frequency

● cur_freq can be read as fast as my user space application allows. I.e. 
microsecond level. 

● Range of freq in this GPU(Hz):
○ 76800000 
○ 153600000 
○ 230400000 
○ 307200000 
○ 384000000 
○ 460800000 
○ 537600000 
○ 614400000 
○ 691200000 
○ 768000000 
○ 844800000 
○ 921600000



frequencymonitor.sh
#!/bin/bash
# This script continuously monitors the GPU frequency with a high‑resolution timestamp.
# It reads the current frequency from the sysfs file and prints it alongside a nanosecond‑precision timestamp.
# Run as root (e.g., using sudo).
# Ensure the script is run as root.
if [ "$(id -u)" -ne 0 ]; then
    echo "Error: Please run this script as root."
    exit 1
fi
# GPU frequency file (adjust this path if necessary)
GPU_FREQ_FILE="/sys/devices/gpu.0/devfreq/57000000.gpu/cur_freq"
# Check that the frequency file exists
if [ ! -f "$GPU_FREQ_FILE" ]; then
    echo "Error: GPU frequency file not found at $GPU_FREQ_FILE"
    exit 1
fi
# Loop forever, reading the GPU frequency as fast as possible with a nanosecond‑precision timestamp
while true; do
    GPU_CUR_FREQ=$(cat "$GPU_FREQ_FILE")
    TIMESTAMP=$(date '+%Y-%m-%d %H:%M:%S.%N')
    echo "${TIMESTAMP} ${GPU_CUR_FREQ}"
done



Finding Power

/sys/bus/i2c/devices/6-0040/iio:device0/in_power1_input

● /sys/bus/i2c/ - This is the sysfs directory for I²C devices. 
● /devices/6-0040/ - This indicates a device at: Bus 6, and Address 0x40 (hexadecimal 40). So this 

refers to an I²C device connected at I²C bus 6, address 0x40.
○ In Jetson devices, this is often a power monitoring IC such as the TI INA3221, which is a triple-channel current and power 

monitor.
● /iio:device0/ - This means the device is registered under the Industrial I/O (IIO) subsystem, which 

Linux uses for sensors and ADC-type devices.
○ iio:device0 is the name given to the first registered IIO device (can be renamed or changed if other devices exist).

● In_power1_input - This file reports the instantaneous power measurement from channel 1 (usually 
GPU).

○ in_power1_input → Typically measured in microwatts (µW)
○ The numbering convention:

■ in_power1_input → channel 1 (often GPU rail)
■ in_power2_input → channel 2 (often CPU rail)
■ in_power3_input → channel 3 (e.g., system or SoC power)

○ So, in_power1_input gives the real-time GPU power consumption.



Finding Power

Access Frequency:

Just like cur_freq, this file is a virtual interface exposed by the kernel.

Can read it as fast as your application allows, even in microseconds.

However:

The INA3221 sensor itself samples data at a fixed rate (typically 1–2 Hz by default).

So reading this file faster than ~once every 500 ms (~2 Hz) usually won’t give new 
values.

Our decision: Poll every 250–1000 ms to get fresh power data without wasting CPU 
cycles.



powergpu.c

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>
#define SAMPLE_INTERVAL_MS 50  // Adjust as needed
int main() {
    const char *gpu_power_path = 
"/sys/bus/i2c/devices/6-0040/iio:device0/in_power1_input";
    while (1) {
        // 1) Read GPU power
        FILE *fp = fopen(gpu_power_path, "r");
        if (!fp) {
            perror("Failed to open GPU power file");
            return 1;
        }
        int power_microwatts;
     

        if (fscanf(fp, "%d", &power_microwatts) == 1) {
            float power_mw = power_microwatts / 1000.0f;
            // 2) Get high-resolution timestamp
            struct timespec ts;
            clock_gettime(CLOCK_REALTIME, &ts);
            struct tm tm = *localtime(&ts.tv_sec);
            // 3) Print timestamp + power
            printf("%04d-%02d-%02d %02d:%02d:%02d.%09ld 
GPU Power: %.2f mW\n",
                   tm.tm_year + 1900,
                   tm.tm_mon + 1,
                   tm.tm_mday,
                   tm.tm_hour,
                   tm.tm_min,
                   tm.tm_sec,
                   ts.tv_nsec,
                   power_mw);
        } else {
            fprintf(stderr, "Failed to parse power value\n");
        }
        fclose(fp);
        // 4) Sleep for the specified interval
        usleep(SAMPLE_INTERVAL_MS * 1000);
    }
    return 0;
}



Finding Temperature

/sys/devices/virtual/thermal/thermal_zone2/temp

● /sys/devices/virtual/
○ The virtual directory is for devices not tied directly to hardware in the traditional bus sense.
○ These are kernel-managed abstractions, like thermal zones, power regulators, and others.

● /thermal/
○ This directory contains thermal management interfaces.
○ It's part of the Linux thermal subsystem, which monitors and controls device temperatures.

● /thermal_zone2/
○ This represents one specific thermal sensor or temperature zone.
○ On Jetson Nano (and other Tegra devices), the thermal zones are numbered and mapped to specific parts of 

the SoC.
● Typically:

○ thermal_zone0 = CPU
○ thermal_zone1 = GPU (or power supply)
○ thermal_zone2 = GPU (in some Jetson builds, confirmed by checking /sys/class/thermal/thermal_zone2/type)



Finding Temperature

Like other sysfs files, we can read temp as fast as we want, but there are sampling 
limits behind the scenes:

● The temperature data is updated based on an internal polling interval set by 
the thermal governor.

● On Jetson platforms, the update frequency is typically ~1 Hz (every 1000 ms).
● Reading faster won’t give us newer data and just consumes CPU cycles.

We decided on: Sampling every 500–1000 ms.



tempmonitor.c
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
int main() {
    // Adjust this path if your GPU thermal zone index is different
    const char *gpu_temp_path = 
"/sys/devices/virtual/thermal/thermal_zone2/temp";
    while (1) {
        // 1) Read the GPU temperature in millidegrees
        FILE *fp = fopen(gpu_temp_path, "r");
        if (!fp) {
            perror("Failed to open GPU temperature file");
            return 1;
        }
        int temp_milli;
        if (fscanf(fp, "%d", &temp_milli) == 1) {
            float temp_c = temp_milli / 1000.0f;
            // 2) Get a high‑resolution timestamp
            struct timespec ts;
            clock_gettime(CLOCK_REALTIME, &ts);
            struct tm tm = *localtime(&ts.tv_sec);

 // 3) Print timestamp + temperature
            printf("%04d-%02d-%02d %02d:%02d:%02d.%09ld GPU 
Temperature: %.2f °C\n",
                   tm.tm_year + 1900,
                   tm.tm_mon + 1,
                   tm.tm_mday,
                   tm.tm_hour,
                   tm.tm_min,
                   tm.tm_sec,
                   ts.tv_nsec,
                   temp_c);
        } else {
            fprintf(stderr, "Failed to parse temperature value\n");
        }
        fclose(fp);
        // Sleep ~50 ms (20 samples per second)
        usleep(50 * 1000);
    }
    return 0;
}



Milestone: Produce first set of CUDA microbenchmarks displaying 
(micro)architectural parameters. ✅



Tool (usage message)

fprintf(stderr,
    "Usage: %s <run_seconds> <threads_per_block> <num_blocks> <arithmetic_intensity> 
<memory_pattern> <stride>\n"
    "Arguments:\n"
    "  run_seconds           - Duration (in seconds) to run the kernel\n"
    "  threads_per_block     - Number of threads per CUDA block (e.g., 128, 256)\n"
    "  num_blocks            - Number of CUDA blocks (e.g., 1 - 65535)\n"
    "  arithmetic_intensity  - Number of floating-point operations per thread (1–10 recommended)\n"
    "  memory_pattern        - Memory access pattern:\n"
    "                           0 = Sequential\n"
    "                           1 = Pseudo-random\n"
    "                           2 = Strided (with stride specified)\n"
    "                           3 = Reverse\n"
    "  stride                - Stride value for pattern 2 (ignored otherwise)\n",
    argv[0]);



Tool (num_blocks & threads_per_block)

In CUDA, the kernel is launched via:

● workloadKernel<<<num_blocks, threads_per_block>>>(...);

This tells the GPU to run:

● num_blocks blocks of threads,
● With threads_per_block threads in each block.

The total number of threads launched is: 

● total_threads = num_blocks × threads_per_block

Its global thread index is given by:

● int idx = blockIdx.x * blockDim.x + threadIdx.x;

Threads are activated automatically by the GPU hardware, and they operate in parallel (as far as resources allow), 
mapped onto the GPU's CUDA cores via thread schedulers in each Streaming Multiprocessor (SM).



Tool (Arithmetic Intensity)

Arithmetic_intensity – Number of floating-point operations performed per thread.

● Increasing this value simulates compute-bound workloads.
● Low values simulate memory-bound workloads.
● This allows the analysis of GPU power scaling under varying FLOPs-to-bytes 

ratios.
● User input 1-10



Tool (Arithmetic Intensity)

Arithmetic Intensity (in our tool) refers to the number of floating-point operations (FLOPs) per 
memory access.

This loop performs:

● 2 floating-point transcendental operations (sinf, cosf)
● 1 floating-point multiplication (*)

So, for each i, we’re doing approximately 3 FLOPs.

By adjusting this parameter, the tool changes whether the kernel is:

● Memory-bound (low AI: more memory access, fewer ops)
● Compute-bound (high AI: more math per memory)



Milestone: Create a maximum power stressmark for the Jetson’s GPU ✅



Tool (Memory Access Patterns)



Sweep Configuration (sweep.sh)

The script explores a dense range of kernel launch parameters:

● Parameter Values Covered
● Threads per block 32, 64, 256, 512, 1024
● Blocks 1 to 3000 (in steps of 50)
● Arithmetic intensity 1 to 10
● Memory pattern 0 = Coalesced, 1 = Random, 3 = Reverse
● Stride Fixed at 1 (no strided memory pattern tested)

This setup enables control over occupancy, memory locality, and 
compute-to-memory ratios.



For each configuration, the script:

● Runs gputool3.cu for 2 seconds
● Samples system metrics mid-run, every 100 ms for 1 second:

○ GPU frequency (cur_freq)
○ GPU power (in_power1_input)
○ GPU temperature (thermal_zone2/temp)

It records the peak values seen during that window — making it suitable for 
thermal/power ceiling analysis.

Outputs csv: 
run_id,threads_pb,num_blocks,arith_intensity,mem_pattern,gpu_freq_hz,power_mw,temp_c

Sweep Configuration (sweep.sh)



Milestone: Method for programmable Jetson utilization, correlated with 
power measurements. ✅



Machine Learning Models Results
Three models and its r^2 value



Machine Learning Models Results
Actual vs Predicted results



Machine Learning Models ResultsMachine Learning Models Results
Feature Importance



Machine Learning Models Results
Data Variation



Milestone: Validated power measurements corresponding to simple CUDA
microbenchmarks. ✅



Next Steps 

● Document additional performance counters (e.g., L2 hit rate, stall reasons).
● Use power and frequency measurements to estimate internal GPU voltage.
● Build more predictive models to predict frequency/power from workload metrics.
● Design dynamic benchmarks that vary load over time to analyze DVFS 

responsiveness.
● Identify and characterize hidden throttling behaviors under thermal or memory 

stress.
● Create a structured dataset of workload parameters and corresponding GPU 

telemetry.
● Investigate GPU behavior during idle/sleep states and low-load operation.
● Extend benchmarks to include real-world GPU workloads (e.g., AI inference 

models).
● Cross-compare DVFS behavior across Jetson platforms (Nano, Xavier, Orin)


